CHAPTER 7 o
Newton's Law of Gravitation

Figure 7.1 Johannes Kepler (left) showed how the planets move, and Isaac Newton (right) discovered that
gravitational force caused them to move that way. ((left) unknown, Public Domain; (right) Sir Godfrey Kneller, Public

Domain)

Chapter Outline

7.1 Kepler's Laws of Planetary Motion

7.2 Newton's Law of Universal Gravitation and Einstein's Theory of General Relativity

INTRODUCTION What do a falling apple and the orbit of the moon have in common? You will learn in this chapter that each is
caused by gravitational force. The motion of all celestial objects, in fact, is determined by the gravitational force, which depends
on their mass and separation.

Johannes Kepler discovered three laws of planetary motion that all orbiting planets and moons follow. Years later, Isaac Newton
found these laws useful in developing his law of universal gravitation. This law relates gravitational force to the masses of objects
and the distance between them. Many years later still, Albert Einstein showed there was a little more to the gravitation story
when he published his theory of general relativity.

7.1 Kepler's Laws of Planetary Motion

Section Learning Objectives

By the end of this section, you will be able to do the following:
e Explain Kepler's three laws of planetary motion

e Apply Kepler's laws to calculate characteristics of orbits



Section Key Terms
aphelion Copernican model eccentricity

Kepler’s laws of planetary motion perihelion Ptolemaic model

Concepts Related to Kepler’s Laws of Planetary Motion

Examples of orbits abound. Hundreds of artificial satellites orbit Earth together with thousands of pieces of debris. The moor’s
orbit around Earth has intrigued humans from time immemorial. The orbits of planets, asteroids, meteors, and comets around
the sun are no less interesting. If we look farther, we see almost unimaginable numbers of stars, galaxies, and other celestial
objects orbiting one another and interacting through gravity.

All these motions are governed by gravitational force. The orbital motions of objects in our own solar system are simple enough
to describe with a few fairly simple laws. The orbits of planets and moons satisfy the following two conditions:

. The mass of the orbiting object, m, is small compared to the mass of the object it orbits, M.
« The system is isolated from other massive objects.

Based on the motion of the planets about the sun, Kepler devised a set of three classical laws, called Kepler’s laws of planetary
motion, that describe the orbits of all bodies satisfying these two conditions:

1. The orbit of each planet around the sun is an ellipse with the sun at one focus.

2. Each planet moves so that an imaginary line drawn from the sun to the planet sweeps out equal areas in equal times.

3. The ratio of the squares of the periods of any two planets about the sun is equal to the ratio of the cubes of their average
distances from the sun.

These descriptive laws are named for the German astronomer Johannes Kepler (1571-1630). He devised them after careful study
(over some 20 years) of a large amount of meticulously recorded observations of planetary motion done by Tycho Brahe
(1546-1601). Such careful collection and detailed recording of methods and data are hallmarks of good science. Data constitute
the evidence from which new interpretations and meanings can be constructed. Let’s look closer at each of these laws.

Kepler’s First Law
The orbit of each planet about the sun is an ellipse with the sun at one focus, as shown in Figure 7.2. The planet’s closest
approach to the sun is called aphelion and its farthest distance from the sun is called perihelion.



Figure 7.2 (a) An ellipse is a closed curve such that the sum of the distances from a point on the curve to the two foci (f; and f,) is constant.
(b) For any closed orbit, m follows an elliptical path with M at one focus. (c) The aphelion (ra) is the closest distance between the planet and

the sun, while the perihelion () is the farthest distance from the sun.

If you know the aphelion (r,) and perihelion (1p) distances, then you can calculate the semi-major axis () and semi-minor axis
b).

_ (ratrp)
-T2

_m

Sy
|

Figure 7.3 You can draw an ellipse as shown by putting a pin at each focus, and then placing a loop of string around a pen and the pins and

tracing a line on the paper.



Kepler’'s Second Law
Each planet moves so that an imaginary line drawn from the sun to the planet sweeps out equal areas in equal times, as shown

in Figure 7.4.

Figure 7.4 The shaded regions have equal areas. The time for mto go from A to B is the same as the time to go from C to D and from E to F.
The mass m moves fastest when it is closest to M. Kepler’s second law was originally devised for planets orbiting the sun, but it has broader

validity.

TIPS FOR SUCCESS
Note that while, for historical reasons, Kepler’s laws are stated for planets orbiting the sun, they are actually valid for all
bodies satisfying the two previously stated conditions.

Kepler’s Third Law
The ratio of the periods squared of any two planets around the sun is equal to the ratio of their average distances from the sun
cubed. In equation form, this is
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where T'is the period (time for one orbit) and ris the average distance (also called orbital radius). This equation is valid only for
comparing two small masses orbiting a single large mass. Most importantly, this is only a descriptive equation; it gives no
information about the cause of the equality.

LINKS TO PHYSICS

History: Ptolemy vs. Copernicus

Before the discoveries of Kepler, Copernicus, Galileo, Newton, and others, the solar system was thought to revolve around Earth
as shown in Figure 7.5 (). This is called the Ptolemaic model, named for the Greek philosopher Ptolemy who lived in the second
century AD. The Ptolemaic model is characterized by a list of facts for the motions of planets, with no explanation of cause and
effect. There tended to be a different rule for each heavenly body and a general lack of simplicity.

Figure 7.5 (b) represents the modern or Copernican model. In this model, a small set of rules and a single underlying force
explain not only all planetary motion in the solar system, but also all other situations involving gravity. The breadth and
simplicity of the laws of physics are compelling.



Figure 7.5 (a) The Ptolemaic model of the universe has Earth at the center with the moon, the planets, the sun, and the stars revolving
about it in complex circular paths. This geocentric (Earth-centered) model, which can be made progressively more accurate by adding more
circles, is purely descriptive, containing no hints about the causes of these motions. (b) The Copernican heliocentric (sun-centered) model

is a simpler and more accurate model.

Nicolaus Copernicus (1473-1543) first had the idea that the planets circle the sun, in about 1514. It took him almost 20 years to
work out the mathematical details for his model. He waited another 10 years or so to publish his work. It is thought he hesitated
because he was afraid people would make fun of his theory. Actually, the reaction of many people was more one of fear and
anger. Many people felt the Copernican model threatened their basic belief system. About 100 years later, the astronomer Galileo
was put under house arrest for providing evidence that planets, including Earth, orbited the sun. In all, it took almost 300 years
for everyone to admit that Copernicus had been right all along.

GRASP CHECK
Explain why Earth does actually appear to be the center of the solar system.
a. Earth appears to be the center of the solar system because Earth is at the center of the universe, and everything revolves

around it in a circular orbit.
b. Earth appears to be the center of the solar system because, in the reference frame of Earth, the sun, moon, and planets

all appear to move across the sky as if they were circling Earth.
c. Earth appears to be at the center of the solar system because Earth is at the center of the solar system and all the

heavenly bodies revolve around it.
d. Earth appears to be at the center of the solar system because Earth is located at one of the foci of the elliptical orbit of

the sun, moon, and other planets.

Virtual Physics

Acceleration
This simulation allows you to create your own solar system so that you can see how changing distances and masses

determines the orbits of planets. Click Help for instructions.

Click to view content (https://archive.cnx.org/specials/ee816dff-obsf-4e6f-8250-fofboe39d716/my-solar-system/)

GRASP CHECK

When the central object is off center, how does the speed of the orbiting object vary?
a. The orbiting object moves fastest when it is closest to the central object and slowest when it is farthest away.
b. The orbiting object moves slowest when it is closest to the central object and fastest when it is farthest away.



https://archive.cnx.org/specials/ee816dff-0b5f-4e6f-8250-f9fb9e39d716/my-solar-system/

c. The orbiting object moves with the same speed at every point on the circumference of the elliptical orbit.
d. There is no relationship between the speed of the object and the location of the planet on the circumference of the
orbit.

Calculations Related to Kepler’s Laws of Planetary Motion

Kepler’s First Law

Refer back to Figure 7.2 (a). Notice which distances are constant. The foci are fixed, so distancef]_fz is a constant. The definition
of an ellipse states that the sum of the distances fi m + mjf, is also constant. These two facts taken together mean that the
perimeter of triangle Af; mf, must also be constant. Knowledge of these constants will help you determine positions and
distances of objects in a system that includes one object orbiting another.

Kepler’'s Second Law

Refer back to Figure 7.4. The second law says that the segments have equal area and that it takes equal time to sweep through
each segment. That is, the time it takes to travel from A to B equals the time it takes to travel from C to D, and so forth. Velocity v
equals distance d divided by time t: v = d/t . Then, t = d/v, so distance divided by velocity is also a constant. For example, if we
know the average velocity of Earth on June 21 and December 21, we can compare the distance Earth travels on those days.

The degree of elongation of an elliptical orbit is called its eccentricity (e). Eccentricity is calculated by dividing the distance f
from the center of an ellipse to one of the foci by half the long axis a.

(e) =fla 7.1

When e = 0, the ellipse is a circle.

The area of an ellipse is given by A = 7ab, where b is half the short axis. If you know the axes of Earth's orbit and the area Earth
sweeps out in a given period of time, you can calculate the fraction of the year that has elapsed.

@ WORKED EXAMPLE

Kepler’s First Law
At its closest approach, a moon comes within 200,000 km of the planet it orbits. At that point, the moon is 300,000 km from the

other focus of its orbit, £,. The planet is focus £; of the moon's elliptical orbit. How far is the moon from the planet when it is
260,000 km from £,?

Strategy

Show and label the ellipse that is the orbit in your solution. Picture the triangle fimf, collapsed along the major axis and add up
the lengths of the three sides. Find the length of the unknown side of the triangle when the moon is 260,000 km from £,.

Solution
Perimeter of fy mf, = 200,000 km + 100,000 km + 300,000 km = 600,000 km.

mfi = 600,000 km — (100,000 km + 200,000 km) = 240,000 km.

Discussion
The perimeter of triangle f;mf, must be constant because the distance between the foci does not change and Kepler’s first law
says the orbit is an ellipse. For any ellipse, the sum of the two sides of the triangle, which are f{m and mf;, is constant.

@ WORKED EXAMPLE

Kepler’s Second Law
Figure 7.6 shows the major and minor axes of an ellipse. The semi-major and semi-minor axes are half of these, respectively.




Figure 7.6 The major axis is the length of the ellipse, and the minor axis is the width of the ellipse. The semi-major axis is half the major

axis, and the semi-minor axis is half the minor axis.

Eartlr’s orbit is slightly elliptical, with a semi-major axis of 152 million km and a semi-minor axis of 147 million km. If Earth’s
period is 365.26 days, what area does an Earth-to-sun line sweep past in one day?

Strategy

Each day, Earth sweeps past an equal-sized area, so we divide the total area by the number of days in a year to find the area
swept past in one day. For total area use A = mab . Calculate A, the area inside Earth's orbit and divide by the number of days in
ayear (i.e., its period).

Solution
total area

area per day = ‘total number of days

= _zab_

365d

7(1.47x10® km)(1.52x10° km)
365 d

1.92 x 10" km?/d

7.2

The area swept out in one day is thus 1.92 x 10'#km? .

Discussion
The answer is based on Kepler’s law, which states that a line from a planet to the sun sweeps out equal areas in equal times.

Kepler’s Third Law
Kepler’s third law states that the ratio of the squares of the periods of any two planets (T;, T,) is equal to the ratio of the cubes of
their average orbital distance from the sun (ry, ). Mathematically, this is represented by
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From this equation, it follows that the ratio r?/T* is the same for all planets in the solar system. Later we will see how the work of
Newton leads to a value for this constant.

@ WORKED EXAMPLE

Kepler’s Third Law

Given that the moon orbits Earth each 27.3 days and that it is an average distance of 3.84 X 10%m from the center of Earth,

calculate the period of an artificial satellite orbiting at an average altitude of 1,500 km above Earth’s surface.
Strategy
The period, or time for one orbit, is related to the radius of the orbit by Kepler’s third law, given in mathematical form by



n_1
7
information tells us that the orbital radius of the moonis r; = 3.84 X 108 m, and that the period of the moon is

T, = 27.3 days . The height of the artificial satellite above Earth’s surface is given, so to get the distance r, from the center of
Earth we must add the height to the radius of Earth (6380 km). This gives r, = 1500 km + 6380 km = 7880 km . Now all

quantities are known, so T, can be found.

. Let us use the subscript 1 for the moon and the subscript 2 for the satellite. We are asked to find T,. The given

Solution
To solve for T,, we cross-multiply and take the square root, yielding

=13 (2)s =T (2)
7.3

— 240 h 7880 km —
T, = (27.3d) (202) ({0 )® — 1.93h,

e

Discussion
This is a reasonable period for a satellite in a fairly low orbit. It is interesting that any satellite at this altitude will complete one

orbit in the same amount of time.

Practice Problems

1. A planet with no axial tilt is located in another solar system. It circles its sun in a very elliptical orbit so that the temperature
varies greatly throughout the year. If the year there has 612 days and the inhabitants celebrate the coldest day on day 1 of their

calendar, when is the warmest day?

a. Day1

b. Dayi1s3
c. Day306
d. Day4s59

2. A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are useful for

communication and weather observation because the satellite remains above the same point on Earth (provided it orbits in

. . . . . . 3 . 3
the equatorial plane in the same direction as Earth’s rotation). The ratio % for the moon is 1.01 x 10'® ky% Calculate the

radius of the orbit of such a satellite.
a. 2.75x10°km

b. 1.96 x 10* km

c. 1.40x10° km

d. 1.00 x 10° km

Check Your Understanding

3. Are Kepler’s laws purely descriptive, or do they contain causal information?
a. Kepler's laws are purely descriptive.
b. Kepler’s laws are purely causal.
c. Kepler’s laws are descriptive as well as causal.
d. Kepler’s laws are neither descriptive nor causal.

4. True or false—According to Kepler’s laws of planetary motion, a satellite increases its speed as it approaches its parent body
and decreases its speed as it moves away from the parent body.
a. True
b. False

5. Identify the locations of the foci of an elliptical orbit.
a. One focus is the parent body, and the other is located at the opposite end of the ellipse, at the same distance from the

center as the parent body.
b. One focus is the parent body, and the other is located at the opposite end of the ellipse, at half the distance from the

center as the parent body.



c. One focus is the parent body and the other is located outside of the elliptical orbit, on the line on which is the semi-
major axis of the ellipse.

d. One focus is on the line containing the semi-major axis of the ellipse, and the other is located anywhere on the elliptical
orbit of the satellite.

7.2 Newton's Law of Unjversal Gravitation and Einstein's
Theory of General Relativity

Section Learning Objectives

By the end of this section, you will be able to do the following:

e Explain Newton’s law of universal gravitation and compare it to Einstein’s theory of general relativity
e Perform calculations using Newton’s law of universal gravitation

Section Key Terms

Einstein’s theory of general relativity gravitational constant Newton's universal law of gravitation

Concepts Related to Newton’s Law of Universal Gravitation

Sir Isaac Newton was the first scientist to precisely define the gravitational force, and to show that it could explain both falling
bodies and astronomical motions. See Figure 7.7. But Newton was not the first to suspect that the same force caused both our
weight and the motion of planets. His forerunner, Galileo Galilei, had contended that falling bodies and planetary motions had
the same cause. Some of Newton's contemporaries, such as Robert Hooke, Christopher Wren, and Edmund Halley, had also
made some progress toward understanding gravitation. But Newton was the first to propose an exact mathematical form and to
use that form to show that the motion of heavenly bodies should be conic sections—circles, ellipses, parabolas, and hyperbolas.
This theoretical prediction was a major triumph. It had been known for some time that moons, planets, and comets follow such
paths, but no one had been able to propose an explanation of the mechanism that caused them to follow these paths and not
others.

Figure 7.7 The popular legend that Newton suddenly discovered the law of universal gravitation when an apple fell from a tree and hit him
on the head has an element of truth in it. A more probable account is that he was walking through an orchard and wondered why all the
apples fell in the same direction with the same acceleration. Great importance is attached to it because Newton’s universal law of
gravitation and his laws of motion answered very old questions about nature and gave tremendous support to the notion of underlying

simplicity and unity in nature. Scientists still expect underlying simplicity to emerge from their ongoing inquiries into nature.

The gravitational force is relatively simple. It is always attractive, and it depends only on the masses involved and the distance



